346 research outputs found

    Shrinkage Estimation of the Power Spectrum Covariance Matrix

    Full text link
    We seek to improve estimates of the power spectrum covariance matrix from a limited number of simulations by employing a novel statistical technique known as shrinkage estimation. The shrinkage technique optimally combines an empirical estimate of the covariance with a model (the target) to minimize the total mean squared error compared to the true underlying covariance. We test this technique on N-body simulations and evaluate its performance by estimating cosmological parameters. Using a simple diagonal target, we show that the shrinkage estimator significantly outperforms both the empirical covariance and the target individually when using a small number of simulations. We find that reducing noise in the covariance estimate is essential for properly estimating the values of cosmological parameters as well as their confidence intervals. We extend our method to the jackknife covariance estimator and again find significant improvement, though simulations give better results. Even for thousands of simulations we still find evidence that our method improves estimation of the covariance matrix. Because our method is simple, requires negligible additional numerical effort, and produces superior results, we always advocate shrinkage estimation for the covariance of the power spectrum and other large-scale structure measurements when purely theoretical modeling of the covariance is insufficient.Comment: 9 pages, 7 figures (1 new), MNRAS, accepted. Changes to match accepted version, including an additional explanatory section with 1 figur

    The Universe at Extreme Scale: Multi-Petaflop Sky Simulation on the BG/Q

    Full text link
    Remarkable observational advances have established a compelling cross-validated model of the Universe. Yet, two key pillars of this model -- dark matter and dark energy -- remain mysterious. Sky surveys that map billions of galaxies to explore the `Dark Universe', demand a corresponding extreme-scale simulation capability; the HACC (Hybrid/Hardware Accelerated Cosmology Code) framework has been designed to deliver this level of performance now, and into the future. With its novel algorithmic structure, HACC allows flexible tuning across diverse architectures, including accelerated and multi-core systems. On the IBM BG/Q, HACC attains unprecedented scalable performance -- currently 13.94 PFlops at 69.2% of peak and 90% parallel efficiency on 1,572,864 cores with an equal number of MPI ranks, and a concurrency of 6.3 million. This level of performance was achieved at extreme problem sizes, including a benchmark run with more than 3.6 trillion particles, significantly larger than any cosmological simulation yet performed.Comment: 11 pages, 11 figures, final version of paper for talk presented at SC1
    • 

    corecore